The Leading Edge Green-Technology for Battery Regeneration Solution

CONTENTS

1. B&F BRS (Battery Regeneration Solution) 1-a. Why do we have to regenerate scrap battery? 1-b. Why Lead-Acid batteries becoming bad? 1-c. What is the change after Battery-Regeneration? 1-d. Regeneration Work Process? 1-e. Standard Regeneration Working Hours 1-f. Success Rate in Battery Regeneration 2. B&F BRM (Battery Regeneration Machine) 2-a. Core Technology 2-b. How BRM Work? 2-c. Features of BRM 2-d. Issues of Legacy Methods 2-e. BRM Models 2-f. SRS(Small Regeneration System) 2-g. BMS(Battery Monitoring System)

- 3. Comparison with major Competitors 3-a. What is the Differences ?
 - **3-b. Other Competitors**
- 4. B&F's Success Experience
- 5. Case Study
 - 5-a. Case Study of Old Battery-Regeneration
 - 5-b. Case Study for Korean Telecom Operator A
 - 5-c. Case Study for Korean Telecom Operator B
 - 5-d. Case Study for Indonesian Telecom Operator A
 - 5-e. Case Study for Indonesian Telecom Operator B
 - 5-f. Case Study for Indian Telecom Operator
 - 5-g. Case Study for Australian Telecom Operator
 - 5-h. Case Study for Ivory Cost Telecom Operator
- 6. Reference Photos
 - 6-a. Battery Regeneration Work Photo
 - 6-b. Battery Discharge Work Photo
 - 6-c. Project Work Photo

1. B&F's BRS (Battery Regeneration Solution)

- 1) B&F "BRS" is using a special electric-pulsing technology to dissolve sulfate into electrolyte effectively and efficiently.
- 2) B&F "BRS" is not using any other powder or chemical in the process of battery regeneration. Instead, only electricity is being used 100%, which is eco-friendly way of battery-regeneration.
- 3) B&F "BRS" is regenerating any kind and any size of lead-acid batteries, including SLI, Deep cycle and back-up batteries.
- 4) B&F "BRS" is doing perfect quality control in battery-regeneration process, so the regenerated batteries with good quality could be provided to customers good warranty service.
- 5) B&F "BRS" is working with BMS (Battery Monitoring System) which monitoring battery quality and status all the time.

1-a. Why do we have to regenerate old battery?

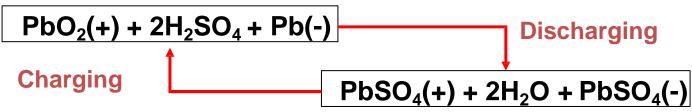
a) Normally, the service fee for old battery regeneration is around 30~40% of brand-new battery Price. Then, more than 50% of cost for battery purchasing could be saved as following calculation;

If we assume the success rate of battery regeneration is 80% in conservative way, and let's say there we have 100 units of scrap-batteries. Then still 20 batteries need to be purchased as brand-new batteries and the remaining 80 old batteries would be regenerated for re-using and the cost for regenerating these 80% would be 28 (=80*0.35) with assumption of regeneration service fee being 35% of brand new price.

Then the total cost is 48(20+28), which results in saving 52.

- b) Re-using scrap batteries by regeneration contributes a lot to save environment by reducing CO2 emission.
- c) Every year, a lot of batteries are becoming scrap-batteries around the world, and battery-regeneration for re-use is the best way for saving cost and environment.
 - Generally, a Telecom operator scraps around 100~150 mil USD amount of batteries every year around the world.

1-b. Why Lead-Acid batteries becoming bad?


Reasons

- Leakage
- Short-circuit
- Shortage of electrolyte

80% due to sulfation

Major Reason of battery going deteriorated

•Mostly lead-acid batteries are getting bad, as they are sulfated after repeated process of charging-&-discharging.

•These crystal-like sulfation are not returned to electrolyte as sulfuric acid, as they physically block the electrolyte from entering the pores of the electrode plates, so they are making the amount of electricity generation declined over time.

If de-sulfated,

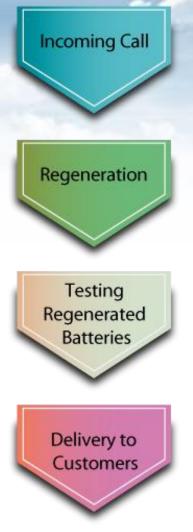
then rejuvenated

1-c. What is the change after Battery Regeneration?

Old battery: <u>As PbSO4 accumulates during long-time use</u>

- Increase of internal resistance (Ex.: brand-new battery 0.5 mΩ or less → old battery 1mΩ)
- Decrease of specific gravity (Ex.: 1.26 -> 1.15)
- Deterioration of discharging capacity: (Ex.: down to 60, 50, 40% or less)

Regeneration of old battery


Regenerated Battery: by dissolving PbSO4 back into electrolyte

- Decrease of internal resistance (Ex.: down to brand-new level)
- Increase of specific gravity (Ex.: up to brand-new level like 1.26)
- Improvement of discharging capacity: (Ex.: up to 80, 90 or even 100%)

1-d. Regeneration Work Process

- Measuring Voltage/SG/Impedance (A)
- Discharging test(A)
- Regenerate old batteries
- Working hours different depending on batteries' environment like maker, battery type(Gel or AGM), and oldness.
- Measuring Voltage/SG/Impedance (B)
- Discharging test(B)
- Evaluation of regenerated batteries and deliver only qualified regenerated batteries to customers.
- The cut-off level is determined by customers and BRM is providing all the quality data to customers after regeneration.
- Some customers want 80% or above and some others want 90% or more.

1-e. Standard Regeneration Working Hours

The regeneration time must be different, depending on each battery's condition and status, even if they are the same model batteries.

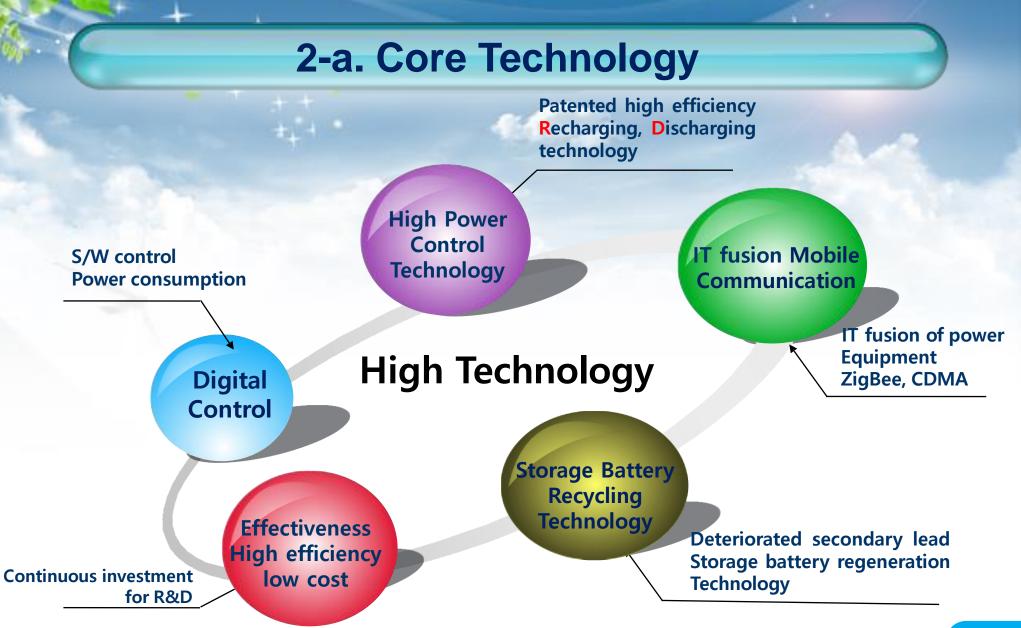
Battery type	Battery Capacity	Standard regenerating Hours	Regeneration Method	Battery Type
SLI battery (car battery)	Any capacity (12V)	12~24 Hours	Each 12 Volt battery on one BR- 6812 or four batteries on one BR- 3648	Mostly wet type (or flood)
Industrial Battery	300~700 Ah (48V)	48~72 Hours	24 cells (that is 48 Volt) on one BR- 3648	Mostly wet type
(Deep Cycle				
Battery for Fork-lifter)	Over 700 Ah (48V)	60~100 Hours		
Industrial Battery	Up to 200 Ah (2 or 12 V) 200 ~ 400 Ah	24~48 Hours 24~72 Hours 48~84	6 cells (they become 12 Volt) on one BR-6812 or 24 cells on one BR- 3648	Mostly AGM or Gel type
(Stand-by Battery like for UPS or	(mostly 2V) 400 ~ 600 Ah (2V)	Hours 60~90 Hours		
Renewable energy system)	600 ~ 1000 Ah (2V)	72~120 Hours		
	1000~3000 Ah (2V)			

1-f. Success Rate in Battery Regeneration based on 2V cell experience

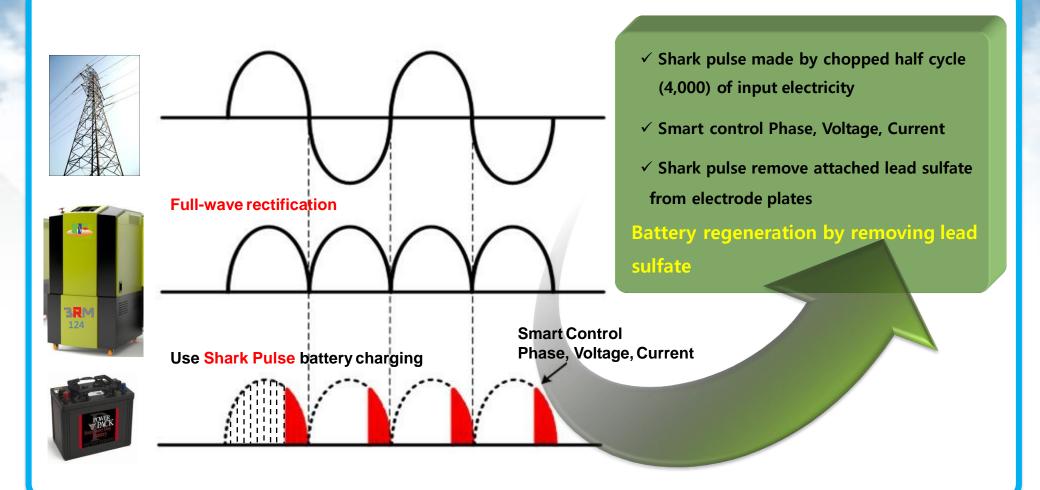
Criteria to judge the success of battery regeneration

- Generally speaking, when the regenerated batteries could discharge more than 80% of brand-new level and keep the impedance value within 100~105% level of brand-new one, the customers accept them as success.
- So, before starting battery-regeneration service, this success criteria must be agreed on and only the regenerated batteries which pass this success criteria must be delivered to customers after rigorous quality control.

Success Rate of Battery Regeneration


- The following factors must give influence on the success rate
 - 1) Who is the battery-maker ? (Chinese, Korean, Japanese or Germany)
 - 2) What kind of battery? (AGM, Gel, flood)
 - 3) How bad is the old battery? (i.e.; impedance level 130%, 200%, 300%?)
 - 4) How well is the old battery kept? (i.e.; how long in the storage?)
- Based on B&F's experience during the time, the success rate of battery-

regeneration based on the above criteria is between 80~95%.


2. B&F BRM (Battery Regeneration Machine)

- Application of patented recycling technology (Patent No. 10-1429608, storage battery recycling equipment)
- ✓ Remove sulfates effectively from deteriorated lead storage battery
- ✓ Supports both Regeneration and Discharging batteries in one unit
- ✓ Quick regeneration time and effective capacity
- ✓ Program mode, easy interface

2-b. How BRM Work?

2-c. Features of BRM

Application of patented recycling technology (Patent No. 10-093150, storage battery recycling equipment)

Each BRM model has both change & Discharging function

3

Low Regeneration Cost Discharging function returns electricity to electric power company.

Large Capacity Battery Regeneration 1.2~150V , 3,000 AH Battery regeneration

5

Automation program mode support 99 hours, 5 type program mode supports

2-c. Features of BRM

SD Card Application

Large 8 inch LCD & Touch Screen BRM Status information, user friendly interface, voltage/current graphical representation

8

Remote Control PC Program Support BRM Remote control in PC for charging & discharging data backup

Easy Software upgrade, charging & discharging data backup

10

Interior design Plug-in type design, Easy service parts exchanging

Patent

Regeneration and Regeneration Method

2-d. Issues of Legacy Methods

Making hole outside battery
 Chemicals addition cause increasing cost
 Long time for battery regeneration
 Many process & Many manpower

Low efficiency

Using electrical pulse

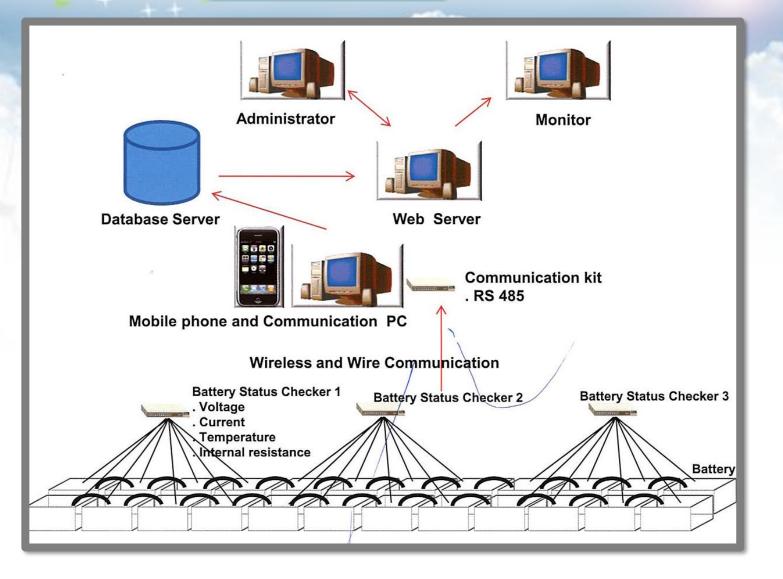
- High price equipment
- Long time for battery regeneration
- Low efficiency

2-e. BRM Models

Model	BRM130	Model	BRM124	Model	BRM115
Power	AC 3PH, 200~440V, 50/60Hz	Power	AC 3PH, 200~440V, 50/60Hz	Power	AC 3PH, 200~440V, 50/60Hz
Output	1.2 ~ 150V, 0A ~ 100A	Output	1.2 ~ 120V, 0A ~ 30A	Output	1.2 ~ 75V, 0A ~ 300A
Battery Volum	e 1,000 AH/10H	Battery Volume	500AH/10H	Battery Volume	e 3,000 AH / 10H
Transformer	20 kW	Transformer	8 kW	Transformer	50 kW

2-f. SRS(Small Regeneration System)

SRS play the efficient role and excellent battery performance by Optimization . It supplying fine pulse current to the electrode plate which makes screen to prevent PbSO4 creation. "SRS" can use for permanent battery solution.


SRS Product Det	ail
------------------------	-----

Product type	2V, 6V, 8V, 12V, 24V
How it works	One (01) Regeneration System Connect one(01) battery.
Current consumption	30mAH more
Frequency	5 ~ 20 KHz
Operating temperature	-40°C ~ 90°C
Product Size	68 x 49 x 14 mm

SRS Effects

- Extended battery life (typically 2.3 times longer than life)
- Maintain battery capacity more than 90% continuously
- Prevent battery deterioration
- Save time for replacing batteries (increase work efficiency)
- Battery overload, overvoltage, over discharge protection
- Improve fuel efficiency by more than 5%
- Reduced engine load due to overall efficiency increase
- Engine, ignition, light, headlight, horn, radio power rise
- Smooth engine start
- CO2 reduction

2-g. BMS(Battery Monitoring System)

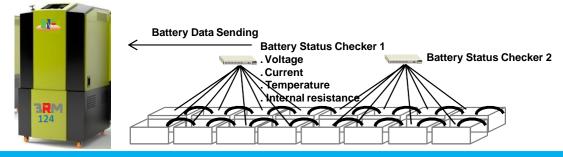
3. Comparison with major Competitors

Model	BRM150	BRM130	M130 BRM124 MCS M-1001I MIDI BRT-100		BRT-100	BRT-20	ZBR-101	ZBR-201			
Maker	В	&F BRM / KORE	EA	MAROO MCS	MAC		Batterie Plus	RepowerTEK			
				/ KOREA	/ SWE	/FRANCE	/ KO	REA			
INPUT Power	3Wii	re 3Phase 380~440V 2Wire 1Phase 3Wire 3Phase 380		re 3Phase 380~4	100V	1 Phase 2	10-~250V				
BATTERY VOLT AGE (V)	1.2~75	1.2~150	1.2~120	1.2~100	 12~48 248~80 	12~120	12~120	2~96	2~96		
BATTERY CAP ACITY (AH)	3,000	1,000	500	300	1,000	1,000	1,000	1,000	1,000		
CONTROLL FREQ.	150/180Hz	150/180Hz	150/180Hz	100/120Hz	15KHz	15KHz	15KHz	15KHz	15KHz		
TIME [h]	24	24	24	48	72 72		72 72		72		
TRANSFORMER	50kVA	20kVA	10kVA	7.5kVA	115kVA 220kVA	16kVA	16kVA	7.5kVA	7.5kVA		
SIZE(cm) W×D×H	80×80×130	60×60×120	60×60×120	40×61.3×133	66×55×120 80×55×195 80×55×100		50x50x100	50x50x100			
CONTROL	Each	battery Data Re	ceive	Total Data	Total	Battery Data Re	ceive	Total Battery	Data Receive		
Discharging	0	0	0	Ο	Х			Х	0		

3-a. What is the Differences ?

1. Discharger included in one BRM equipment

- BRM returns electricity to electric power company during discharging. It turns analog electric power meter backward.
- ✤ Competitors use separated heating discharger.


3-a. What is the Differences ?

- 2. Regeneration of large-capacity battery
 - BRM regenerates many batteries at a time

- 3. BSC (Battery Status Checker)
 - ✤ Easy to diagnose bad batteries, efficient monitoring

discharge & charge status

3-a. What is the Differences ?

4. High regeneration efficiency

- ✤ 90% UP: Large capacity UPS Battery
- ✤ 80% UP : Forklift Battery & Small capacity UPS battery

5. No use any Chemicals

- ✤ No Extra cost for regeneration due to chemicals
- Competitors use chemicals for cooling during regeneration
- 6. The other regeneration systems make a lot of heat inside battery
 - Have to wait 1~2 days until cool down
 - Heat causes deterioration
- 7. The others can regenerate batteries with at least 50% remaining capacity
 - They cannot regenerate less than 40% remaining capacity
- 8. Easy software upgrade
- 9. Turnkey solution provider
 - Battery regeneration biz consulting
 - Technical support and training

3-c. Other Competitors

There are many Companies of Battery Regenerator.....BUT

Puma PRH-3030 (JAPAN)

X-Charge/X-Tester REGENTECH (KOREA)

ECOTAIN (KOREA)

ONE by ONE ! Separated Discharge Unit ! Use Chemicals ! Small Capacity !

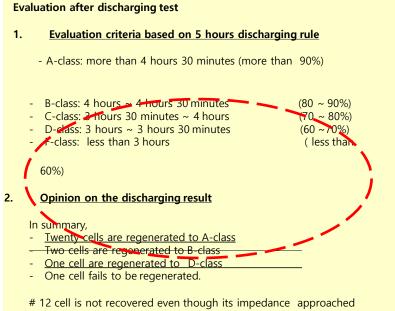
VS

Many batteries at a time ! Discharge & Charge in One Unit ! No Chemicals ! Big Capacity !

Your Choice?

5. B&F's Success Experience

-BRM exported its technology to more than 30 countries around the world. -In some countries, B&F started to provide commercial service of battery regeneration to the major customers like telecom operators.


Country	Customer/battery type/working history
Korea	K-Telecom: 2v, 420, 600Ah Gel, 1800Ah Gel, 2000Ah Gel (3 years 4 months) L- Telecom: 2v, 300, 600Ah Gel (1 year 6 months) S-Telecom: 2v 600Ah AGM (6 months)
Indonesia	I-Telecom 12v, 100Ah AGM, 2v, 600Ah Gel (1 year 3 months) T- Telecom: 12v, 200Ah, AGM (1 year)
Mexico	T-Telecom: 200 Ah, AGM, 2000 Ah, Gel, 3000Ah, PS (1 year 3 months) BT-Telecom: 150Ah AGM, 600Ah Gel (1 year)
Iran	I-Telecom: 12v, 150Ah AGM, 2v, 2000Ah AGM
India	A-Telecom: 2v, 330Ah AGM (1 year)
Sri Lanka	M-Telecom: 2v, 300Ah AGM (1 year)
Tanzania	V-Telecom: 12V, 200Ah AGM, 2v, 2000Ah Gel (1 year 5 months)
Australia	T-Telecom: 2v, 500Ah AGM (1 year 10 months)
Ivory Coast	M-Telecom: 6v, 200Ah AGM (7 months)
Romania	Solar power company: 2v, 4000Ah Gel (1 year)
Bangladesh	R-Telecom: 2v, 400Ah AGM, Gel, (1 year 2 months) B-Telecom: 2v, 400Ah Gel, (6 months) G-Telecom: 2v, 400Ah GEL, (3 months)

6-a. Case Study of Old Battery-Regeneration

Tested battery: Korean VGS 600Ah, 2 Volt Gel battery

Nov. 12, 2012

Cel I		Beforevalue			After value		scharging sult
Voltage (V)		Imped. I (mOhm)	mped. (%)	Voltage (V)	Imped. (mOhm)	Imped. (%)	
1	2.090	0.876	199.09	2.17	0.369	83.86	A
2	2.070	0.903	205.23	2.15	0.371	84.32	A
3	2.100	0.496	112.73	2.17	0.337	76.59	А
4	2.030	0.612	139.09	2.14	0.363	82.5	В
5	2.080	0.360	81.82	2.16	0.346	78.64	A
6	2.100	0.460	104.55	2.18	0.325	73.86	А
7	2.050	0.529	120.23	2.17	0.346	78.64	А
8	2.100	0.566	128.64	2.2	0.368	83.64	А
9	2.050	0.835	189.77	2.14	0.367	83.41	В
10	2.110	0.571	129.77	2.2	0.352	80	А
11	2.040	0.503	114.32	2.17	0.339	77.05	А
12	1.820	4.247	965.23	2.03	0.459	104.32	F
13	1.980	0.676	153.64	2.11	0.353	80.23	D
14	2.110	0.744	169.09	2.18	0.335	76.14	А
15	2.050	0.489	111.14	2.17	0.34	77.27	А
16	2.050	0.590	134.09	2.18	0.336	76.36	А
17	2.110	0.642	145.91	2.18	0.338	76.82	А
18	2.050	0.643	146.14	2.18	0.344	78.18	A
19	2.050	0.466	105.91	2.18	0.497	112.95	А
20	2.050	0.592	134.55	2.18	0.346	78.64	А
21	2.050	0.576	130.91	2.17	0.345	78.41	A
22	2.110	0.597	135.68	2.2	0.34	77.27	A
23	2.060	0.590	134.09	2.18	0.348	79.09	A
24	2.100	0.786	178.64	2.19	0.345	78.41	A
						ver.)	
		Original: 0.44			0.3587	81.525	

12 cell is not recovered even though its impedance approached to near brand-new level, while #19 is

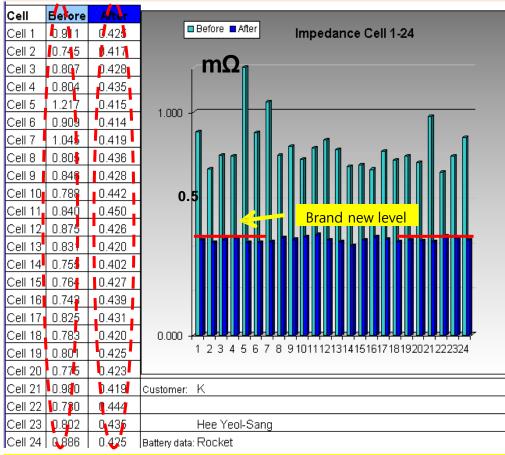
recovered

near to brand-new level after regeneration. This mean that #12 has some problem inside.

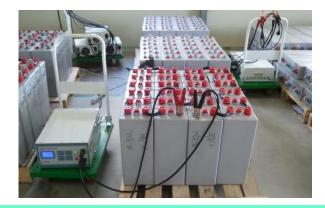
Now, when we consider the impedance and discharging data, we can strongly recommend 21 cells with A or B-class except #19 which has relatively higher impedance than brand-new level among 24 cells for reuse. Even #19 could be reused but we will try more to reduce the impedance level.

6-a. Case Study of Old Battery-Regeneration

시간/설 충전입	1 1	2	3	4	5	6	7	8	9	10	11	12
30분 - 12.8	1.217	2.227	2.262	2.19t	Jac	2.218	2204	2223	2189	2.23/	2.192	201
1시간 \	6				/	1						1
3011 U.L.2	1940	1.916	1.9E1	1.924	1.941	1.9E1	1.966	1.945	1.903	1948	1.916	145
2시간(4) 8 / 2~~ 30분 (2. 4	= 1.932	1.899	1.926	1.893	1.927	1.929	1.944	1929	1.98t	1. 332	1.919	
30是 12.4	0 190×	1.882	19/2		1912	1.9/14	1920	19/2	186t	191×	1.893	_
3시간 42.9	0 1.3.88	1.4LT	1.393	1.839	1.896	1.899	1. 2.99	1895	1244	1897	1871	-
30是 13.1		1.849	1.28 t	11.314	1.382	1.826	1.880	1.819	1.8=1	1.881	18/2	
412 40.10		1 1 1	100		Prett	10/7.	4	18114	1-710	1400		
30분 3550	A A	A		B	/ A	A			B)
5시간	-		1						1.5			_
30분	-		-									-
6시간	-	-			1.0				-	-	-	-
시간/셀 방전전4		14	15	16	17	18	19	20	21	22	23	24
30분	2.130	224	2.2al	fore	3.22/	2304	2233	2.207	2243	7227	22/0	2.2
1시간		-				0.01						
30분	1910	1.944	1.967	1.966	1.9t4	1.964	1.967	1.962	1365	1.9.67	1.966	1.9
2시간	1.880	1.9-38	1.94t	1.944	1.937	1.945	1.90×	1.8%0	1.943	1.9/2	1.826	1.9.
30분	1.84.4	1.8/3	1.9-20	1.929	1.922	1.916	1.917	1.915	1.917	1.9-6	1.819	1.5
시간	1.286	1.899	1.901	1.299	1.908	1.896	1.894	1896	1.287	1.912	1.900	1.8
30분	1.693	1.887	1AR3	1.881	1.894	1378	1.894	1.878	1.019	1.899	1.5P3	10
시간	-	1862	1852	1849	1870	1845	1839	1841	1841			
30분	Summer of	1850	1830	1827	1756	1821	18.17	1825	1824	1262	1233	10
and the second se		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	13 million 19			1 million	a la company	1	-	-	-
시간 30분			A	Α	Α		A –	A		A	A	


Tested battery: Korean VGS 600Ah, 2 Volt Gel batter

» The finishing voltage of each cell is 1.75Volt.


» The discharging ampere for 5 hours rule is 106 ampere.

6-b. Case Study for Korean Telecom Operator A

Tested battery: Korean VGS 420Ah, 2 Volt Gel battery

Impedance of New Battery : $0.5 \text{ m}\Omega$ or less

Regeneration Result

- The discharging capacity is improved from 59.5% level to 92.1% level by regeneration.

	Before regen.	After Regen.
Discharging time	357	553
Discharging Current	42	42
Total Discharged Ah	250	387
Capacity (%)	59.50%	92.1%

6-c. Case Study for Korean Telecom Operator B

Tested battery: Korean 600Ah, 2 Volt AGM battery

	Before regeneration								
Cell No	voltage	Impedance							
1	2.120	0.478							
2	2.120	0.604							
3	2.110	0.599							
4	2.100	0.633							
5	2.090	0.690							
6	2.110	0.480							
7	2.100	0.499							
8	2.090	0.589							
9	2.090	0.556							
10	2.110	0.668							
11	2.100	0.410							
12	2.100	0.508							

	After regeneration	
Cell No	voltage	Impedance
1	2.190	0.377
2	2.180	0.405
3	2.180	0.405
4	2.180	0.301
5	2.150	0.392
6	2.180	0.311
7	2.180	0.344
8	2.150	0.303
9	2.170	0.305
10	2.170	0.317
11	2.170	0.308
12	2.170	0.310

Impedance of New Battery : $0.35 \text{ m}\Omega$ or less

Evaluation of regenerated batteries by the Telecom Operator (December 2010)

. Compared with the brand-new cells' level (impedance between 0.2~0.35 m Ω , voltage between 2.2V±0.1v), 17 cells among 24cells (85%) are evaluated to be regenerated to normal cells, which satisfy our standard for use in the field.

6-d. Case Study for Indonesian Telecom Operator A

Tested battery: Power Plus 600Ah, 2 Volt Gel battery

				Before Value After Value					Discharg	ge Value	Value After Value					
Pattor	- Decensor	tion Bonart	C.8	Voltage	mΩ	٩	Voltage	mΩ	ę	C.I	Voltage	mΩ	•	Voltage	С Н	••
Dattery	/ Kegenera	tion Report	1	2.120	0.577		2.200	0.450		1						Γ
Date :			2	2.120	0.561		2.200	0.459		2						
			3	2.120	0.567		2.200	0.455		3						
2011-04-07			4	2.120	0.866		2.200	0.459		4						
			6	2.120	0.566		2.200	0.429		5						
Customer		Operation	6	2.120	0.583		2.200	0.445		6						
Customer	Telecom Indonecia	BQR -5450	7	2.120	0.585		2.200	0.452		7						
Responsible staff	Sang hee yeol	Regeneration time	3	2.120	0.600		2.200	0.457		8						
		54 hours	9	2.120	0.556		2.200	0.455		9						
Battery Specific	cations		10	2.120	0.491		2.200	0.452		10						
Company	Telecom Indonecia		11	2.120	0.580		2.200	0.462		11						Г
Model Name	Power Plus		12	2.120	0.533		2.200	0.447		12						Γ
Capacity	600A		15	2.120	0.590		2.200	0.458		13						
Impedance	0.44 m <u>Q</u>		14	2.120	0.527		2.200	0.461		14						
Voltage.Impedance	2V X 24 =48V		16	2.120	0.569		2.200	0.457		15						
			16	2.120	0.502		2		Impedance							
			17	2.130	0.536							-				Γ
	Before Value	After Value	18	2.120	0.564						ation :					Γ
	Before Value	After Value	19	2.120	0.567		2 0.5	5 84 m	Ω (133	%)					Γ
Discharging time	450 min	564 min	20	2.120	0.517		2.200	0.447		20						
	430 1111	304 1111	21	2.120	0.539		2.200	0.441		21	\Box					
Discharging orruent	52.6	51~54	22	2.120	0.526		2.200	0.446		22	\mathcal{D}					
	52.0	51 51	23	2.120	0.541		2.200	0.459			Avera	ge	Im	pedai	nce _	
Discharge capacity(AH)	394.5	530	24	2.120	0.574		2.200 0.448 after re									
			26	2.120	0.691		0.482 m Ω (110%)					_				
Eattery capacity(%)	75.096	94.3%	26					111 36	(' '	0,0)						
	1-1		27							27						L
									Те	otel	65.01	13.32		52.30	10.86	
									Ave	nge	2.120	0.666		2.200	0.463	

Regeneration Result: The discharging capacity is improved from 75.0% level to 94.3% level by regeneration.

6-e. Case Study for Indonesian Telecom Operator B

. Tested Battery Information: BAE, Germany/ Capacity : 12v 115AH/ Type: GEL (UPS) Original Impedance : 9mΩ

No.	Voltage (V)	Impedance <i>–</i> before (mΩ)	Impedance-before vs. original impedance (9mΩ) (%)	Impedance <i>–</i> after (mΩ)	Impedance-before vs. original impedance (9mΩ) (%)
1	12.71	11.50	127.778%	6.113	67.92%
2	12.49	17.56	195.111%	6.765	75.17%
3	12.70	12.39	137.667%	6.096	67.73%
4	12.74	11.99	133.222%	6.395	71.06%
5	12.09	37.02	411.333%	14.09	156.55%
6	12.26	32.95	366.111%	17.28	192.0%
7	12.09	15.28	169.778%	12.60	140.0%
8	12.71	16.05	178.333%	6.249	69.43%

REJUVENATION TECHNOLOGY AGAINST NORMAL PRACTISE.

NO. OF BATTERIES : 12 batteries

INITIAL BATTERY CONDITION : All batteries which were taken from the warehouse are already considered as SCRAPED. These batteries are below the usable parameters (not enough capacity to hold current and its way below the expected Discharging Time) and categorized as UNUSABLE.

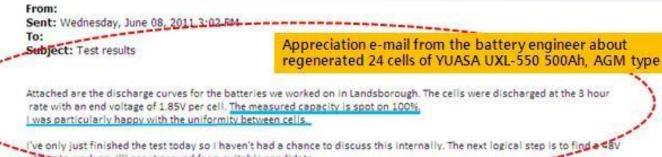
WITHOUT REJUVENATION

1.REMEDY/SOLUTION : To change all the 12 batteries to new ones. This means cost and expenditure.

WITH REJUVENATION

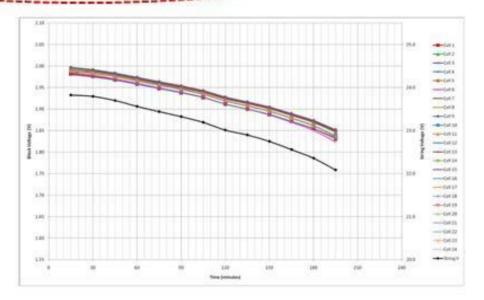
1. REMEDY/SOLUTION : AFTER APPLYING ECOSAVER TECHNOLOGY

9 Batteries have been restored & revived and 3 batteries are beyond redemption (Due to severe sulfation and or internal damaged)


6-f. Case Study for Indian Telecom Operator

Battery Regeneration Worksheet for 330Ah, 2V AGM battery

Date: Customer: Battery Make: Battery Type: Battery Specs: Volts Capacity Machine Used: Regeneration Time: Volt Settings: Ampere Setting: Discharge Time:	28-May-12 HBL VRLA 48, 2 V each 330AH BR004 48Hrs 48V 33 3T	We c value		e the in		ew batteries: ement of	0.5 mΩ or			All the cel test.	<mark>ls passed</mark>	discha	<mark>rging</mark>		
Battery Sr. No.	Elect Maneur	rement sefore REG		T REG	Affec Cha	rge - min 2 hrs	Reading	s on 28/05/2012	Record Rec	on 31/06/2012					
Battery of No.	Volts	Dhm (mΩ)	V	Ohm (mD)	V	Ohm (mΩ)	V	Ohm (mΩ)	V	Ohm (mΩ)	Disc	h. Test	Date	Meas, After	r Diso.Test
307 01 01	2.00	1.80	2.183	0.441	2.228	0.464	2.177	0.363		Sum (mag	/ mp	Time(Hrs)	\	v	Ohm (mΩ)
307 02 02	2.03	1.88	2.169	0.441	2.215	0.508	2.161	0.451			WL	5	30.05.12	2.104	0.345
307 03 03	2.06	0.83	2.166	0.517	2.225	0.630	2.163	0.480		<u> </u>	WL	5	30.05.12	2.084	0.355
307 04 04	2.02	1.16	2.180	0.442	2.227	0.482	2.175	0.387			WL	5	30.05.12	2.092	0.513
307 06 05	2.00	1.92	2.180	0.485	2.220	0.553	2.174	0.357			WL	5	30 05.12	2.105	0.476
307 07 06	2.00	1.86	2.180	0.543	2.225	0.565	2.178	0.330			WL	5	30,05.12	2.102	0.433
307 08 07	1.99	0.81	2.185	0.414	2 217	0.520	2.173	0.398			WL	5	30. 5.12	2.123	0.410
307 09 08	1.99	1.88	2.179	0.456	2 110	0.605	2.174	0.488			WL	5	31.05.12	2.133	0.309
307 10 09	2.01	1.90	2.180	0.513	2.713	0.560	2.185	0.520			WL	5	31.0 5.12	2.133	0.313
307 11 10	2.02	0.82	2.190	0.478	2.220	0.536	2.180	0.453			WL	5	31.0 3.12	2.141	0.401
307 12 11	1.99	1.04	2.185	0.472	2.214	0.520	2.174	0.405			WL	5	31.05.12	2.140	0.367
307 13 12	2.07	1.04	2.180	0.569	2.212	0.620	2.152	0.532	2.236	0.467	WL	3	31.0 3.12	2.134	0.367
307 14 13	1.99	1.99	2.159	0.463	2.710	0.550	2.175	0.388			WL	3	01.05.12	2.098	0.430
307 15 14	2.01	0.77	2.181	0.526	2.215	0.581	2.178	0.460			WL	3	31.03.12	2.136	0.345
307 16 15	2.01	0.84	2.184	0.472	2.223	0.509	2.179	0.470	2.216	0.529	WL	3	31.05.12	2.139	0.432
307 17 16	1.99	1.93	2.186	0.570	2.208	0.540	2.171	0.518			WL	3	01.05.12	2.140	0.460
307 18 17	2.00	0.82	2.177	0.404	2 220	0.501	2.178	0.430			WL	3	31.05.12	2.140	0.438
307 19 18	2.01	1.59	2.184	0.536	2.221	0.485	2.177	0.474			WL	5	31.05.12	2.140	0.425
307 20 19	2.01	1.99	2.184	0.556	2.215	0.501	2.175	0.407			WL	5	31.05.12	2.138	0.433
307 21 20	1.98	1.72	2.181	0.458	2.209	0.468	2.171	0.365			WL	3	31.05.12	2.129	0.440
307 22 21	1.99	2.40	2.177	1.896	2.145	1.909	2.114	1.830	2.171	1.829	WL	3	01.06.12	2.061	2,493
307 23 22	1.98	0.79	2.123	0.416	2.202	0.430	2.166	0.428			WL		01.06.12	2.120	0.396
307 24 23	1.95	1.94	2.161	0.469	2.183	0.482	2.154	0.366			WL	3 /	01.06.12	2.110	0.394
307 03 24	1.99	1.09	2.177	0.502	2.203	0.519	2.171	0.412			WL	3	01.06.12	2.120	0.377
							52.075		11.712					50.897	11.796
TOTAL							2.169792	11.712				_		2.1207083	0.4915
AVERAGE								0.488							


6-g. Case Study for Australian Telecom Operator

Battery Regeneration Test Result in 2016 June

string to work on. I'll scout around for a suitable candidate

Regards

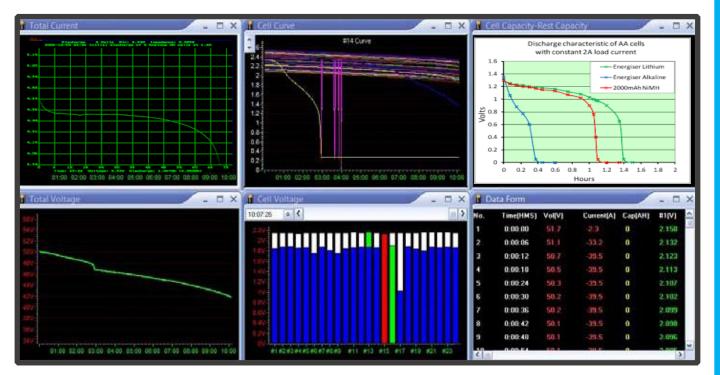
6-h. Case Study for Ivory Cost Telecom Operator

Battery Regeneration Test Result in 2012 September

				Before Value				After Value				Discharge Value				After Value		
Battery Regeneration Report				Cell	Voltage	mΩ	°C	Voltage	mΩ	°C	Cell	Voltage	mΩ	°C	Voltage	m		
Dute .				1	6.16	1.544		6.430	1.263									
30/09/2012				2	6.06	1.473		6.460	1.172									
Customer				4	6.08	1.457		6.430	1.164									
Customer	MTN	1	_	5	6.1	1.621		6.450	1.186									
customer		Operation	-	7	6.1 6.12	1.609 1.453		6.470 6.460	1.185		<u> </u>							
Responsible staff			_	9	6.04	1.446		6.440	1.160									
.		1	_	11	6.06	1.430		6.450	1.168									
Battery																		
Specification	-	BR-																
Company	Emerson	3648																
ModelName	EB4 6v 200	Regeneration time																
Capacity	200AH	30 hours	_															
Impedance	N/A																	
Voltage	6V			1	1	1	l			l	I	1 1		1		1		
		After Value			Place	: STA	IC of	fice: D	ate : 3	30/0	9/20	012						
	No 1: 525m, No 2	2: 540m, N0 4: 540m, No 5:			Batte	rv Mo	del:	8 units	of Er	ners	on E	B4 6v	200					
Dischausingting	510m					-		nhance								nal)		
Discharging time	No 7: 524m No 8	: 530m No 9: 524m No 11:											`		00 /F:			
	552m							edance		504	+ (in	itial) -	7 av.	1.1	83 (FI	nal		
	No 1, 2, 4, 5, 7, 8	, 9, 11 -		(25% improvement)														
Discharging crruent	24A				b. Di	schar	ging	Capacit	ty: ave	erag	e. 87	% of r	new b	atte	ery.			
L			I						Dis	scha	rging	g time	av. 52	20m	in			

7. Reference Photos

7-a. Battery Regeneration Work Photo


Letter of Award (Robi)

1	Han Bengender VII. (al. and ever the oppongness) In Them The Res Res 10 (100) In (100)
	nel Nu. 104/2007 1208 Nu. Avrill. 2007 Nu. Bil Gergung Linker Bildensens Bulley in Many Merika N26 1042, 200 Barler Avrill. Baland J. Bala 201, Bened Manyer Baland Linke of Avent SJAC for Kentry Referitationed Kentre.
	 present in theme years first BMF Garagane (added) has been insteaded and an ended for Kattery Revealances of program. The granupper CPU Debates of Physics I'rest Revealance. The second control of the State of the Stat
25	tau umanagaran d'Estato et la tiple agression. Taun mi Gui Santan Francesco R. Ellanomen DA, 100
	All the consequent, while is that causes in the Tenners instant leads point the faces rate is the stants of the Tenners instant leads point the faces rate is a set by a stant or a face of the Tenners is a set by a stant or a face of the Tenners is a set by a stant or a face of the Tenners is a set by a stant or a face of the Tenners is a set by a stant or a Tenners is a set by a stant or a Tenners is a set by a stant or a Tenners is a set by a stant or a Tenners is a set by a set of the Tenners is a set o

7-b. Battery Discharge Work Photo

#001-01.917	#989-01.469	#017-01.93
#002-01.912	#010-01.954	#018 01.92
#003-01.935	#011-01.912	
#004-01.920	#012-01.927	#020-01.91
	#013-01.872	#021-01.96
#006-01.923	#014-01.929	#822-01.93
#007-01.852		#023-01.94
	#016 01.808	#024-01.95
Group: 1		
Pice Pice		National Contents

Battery Discharge Work Graph

7-c. Project Work Photo

Bangladesh

7-c. Project Work Photo

Total Battery Solution for Highest Efficient Battery Life, Performance Upgrading & Maintenance

BANGLADESH OFFICE:

Montecristo Building(4-5th floor), Plot No. NE(K)-10A/2, 176 Gulshan North Ave., Dhaka-1212.

BANGLADESH FACTORY:

Vill.: Polashpur(1st Dholeswary Bridge), Post: Abdullah Pur, P.S.: Keraniganj, Dist.:Dhaka.

KOREA OFFICE:

2-811, Philleo Twin Park, 1160-3, Joong-Dong, Buchon-si, Kyung Ki-Do, Korea

